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1. Introduction

Since Schnabl provided [1] an analytic solution for tachyon condensation [2] in bosonic open

string field theory, it has been of some interest to extend the analysis to superstrings. The

most robust approach would utilize Berkovits’s WZW-type superstring field theory [3], the

only superstring framework for which reliable evidence for Sen’s conjectures is available [4].

However, the nonpolynomial structure of the WZW action makes it a challenge to identify

a solution and compute the brane tension analytically. Thus it seems worth reconsidering

an old, if somewhat questionable proposal, which formulates superstring field theory as a

cubic action for a picture number 0 string field — the so-called modified cubic superstring

field theory [5] (see refs. [6, 7] for reviews). The action is,

S =
1

2
〈〈Ψ, QBΨ〉〉 +

1

3
〈〈Ψ,Ψ ∗ Ψ〉〉 (1.1)

where Ψ is a ghost number 1, picture number 0 string field in the small Hilbert space of the

matter+ghost superconformal field theory X,ψ, b, c, ξ, η, φ. The only qualitative difference

from the bosonic string is the definition of the bracket 〈〈, 〉〉, which requires insertions of

two inverse picture changing operators at the open string midpoint. As a correlator in the

upper half plane,

〈〈Ψ,Φ〉〉 = 〈Y−2 I ◦ ψ(0)φ(0)〉UHP I(z) = −
1

z
(1.2)

where (using the doubling trick),1

Y−2 = Y (i)Y (−i) Y (z) = −∂ξe−2φc(z) (1.3)

1There are actually many possible choices for Y−2, defining inequivalent string field theories off-shell.

We will stick with the definition eq. (1.3) since it the most canonical choice.
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Level: (0,0) ( 1

2
,1) (2,4) (2,6) (5

2 ,5)

Percent Brane Tension — 97% 108% 99% 91%

Table 1: Percent of brane tension produced for the tachyon vacuum in the modified cubic theory

at various levels. Results taken from Raeymaekers [6] and Ohmori [9].

Since Y (z) is dimension 0, BRST invariant and inserted at the midpoint, one can easily

verify that all of the usual Chern-Simons like axioms are satisfied.

Though this action is very simple, as yet it is uncertain whether it defines an acceptable

string field theory. One well-known objection [8] is that Y−2 has a nontrivial kernel, so

the expected cubic equations of motion are reproduced only up to terms annihilated by

Y−2. However, the offending fields would be very singular at the string midpoint,2 so it

is unclear at what level this phenomenon will cause problems. Perhaps the ultimate test

is to see whether the action reproduces the expected physics of tachyon condensation.

Unfortunately, the answer is unclear [6, 10, 9]. A candidate vacuum solution has been

identified at the first few levels, but — as can be seen in table 1 —the energy does not appear

to converge. In fact, at level (5
2 , 5) an odd thing happens: the tachyon effective potential

hits a singularity before the stable vacuum is reached, meaning that the (conjectured)

nonperturbative vacuum lies on disconnected branch of the potential [6]. Despite these

oddities, the striking thing about the energies in table 1 is that they are so close to the

right answer. It is hard to believe this is a coincidence, but certainly more computations

would be necessary to establish some sort of convergence.

In this paper we study the modified cubic theory from an analytic perspective, finding

that — despite the above problems — the theory has a solution which can be interpreted

as the endpoint of tachyon condensation. The crucial component is the calculation of the

correct brane tension, which serves as a successful test of the cubic action. Surprisingly,

the solution vanishes in the GSO(−) sector, implying that the vacuum exists even for the

field theory on a BPS brane.

This paper is organized as follows. In section 2 we give the algebraic setup and present

the solution. We give a careful discussion of the “ψN piece” which requires some additional

modification to reproduce the correct brane tension. In section 3 we evaluate the energy.

Due to the extraordinary simplicity of the crucial correlator, the calculation is very easy —

much simpler than for the bosonic string. In fact, we are even able to compute the energy

directly in the L0 level expansion. We end with some conclusions.

2. Solution

We seek a generalization of Schnabl’s solution for the cubic superstring equations of motion.

The first step is identifying the relevant worldsheet degrees of freedom for expressing the

2The subalgebra of wedge states and related operators relevant for analytic calculations does not nat-

urally produce fields in the kernel of Y−2. On the other hand, it is difficult to study vacuum string field

theory [9] with the canonical kinetic operator ∼ c(i) in this framework.
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solution. In split string notation [11 – 13], we claim these degrees of freedom are given by

four string fields,

K = Grassmann even, gh# = 0

B = Grassmann odd, gh# = −1

c = Grassmann odd, gh# = 1

γ2 = Grassmann even, gh# = 2 (2.1)

defined,

K = −
π

2
(K1)L|I〉 K1 = L1 + L−1

B = −
π

2
(B1)L|I〉 B1 = b1 + b−1

c = −
1

π
c(1)|I〉

γ2 =
1

π
γ2(1)|I〉 γ2(z) = η∂ηe2φ(z) (2.2)

where |I〉 is the identity string field and the subscript L denotes taking the left half of the

corresponding charge (integrating the current counter-clockwise on the positive half of the

unit circle). These fields satisfy the algebraic relations,

[B,K] = 0 [B, γ2] = 0 [c, γ2] = 0

[B, c] = 1 B2 = c2 = 0 (2.3)

and have BRST variations (d = QB),

dc = cKc + γ2 dB = K

dγ2 = cKγ2 − γ2Kc dK = 0 (2.4)

As another bit of notation, we denote

F = eK/2 = Ω1/2 (2.5)

for the square root of the SL(2, R) vacuum Ω = eK .

With these preparations, the conjectured vacuum solution to the cubic equations of

motion

dΨ + Ψ2 = 0 (2.6)

is

Ψ = Fc
KB

1 − F 2
cF − FBγ2F (2.7)

We recognize the first term as Schnabl’s solution for the bosonic string; the second term is a

surprisingly simple superstring “correction.” The solution is real and satisfies the Schnabl

gauge B0Ψ = 0. There are many ways of “deriving” eq. (2.7), but perhaps the simplest is

– 3 –



J
H
E
P
0
1
(
2
0
0
8
)
0
1
3

to translate Okawa’s pure gauge form [11] using the modified BRST identities eq. (2.4).3

Following Ellwood and Schnabl [18], the proof of absence of cohomology is immediate. We

simply note the existence of a homotopy operator A satisfying,

dΨA = dA + [Ψ, A] = 1 (2.8)

The homotopy operator is the same as for the bosonic string,

A = −B

∫ 1

0
dtΩt (2.9)

since the B kills the correction term −FBγ2F and the rest of the computation reduces to

the bosonic derivation.4

Perhaps the most alarming aspect of the solution eq. (2.7) is the absence of GSO(−)

states. In particular, the solution exists even for the field theory on a BPS D-brane.

While this is quite counterintuitive, we can offer some insight as to why this is possible,

at least at the mathematical level. Note that, in some sense, the modified cubic theory

has two tachyons: the physical tachyon in the GSO(−) sector, corresponding to the vertex

operator γ(0); and the “auxiliary tachyon” in the GSO(+) sector, corresponding to the

vertex operator c(0). The auxiliary tachyon does not represent a physical instability since

c(0) cannot be placed on shell. Nevertheless, the condensation of c(0) is really what’s

responsible for the absence of open strings at the vacuum. One way of seeing this is

through vacuum string field theory [20], which can be obtained from eq. (2.7) after an

infinite reparameterization in the L0 level expansion. At the first two L0 levels the solution

is,

Ψ = −FcF +

(

1

2
FcKBcF − FBγ2F

)

+ . . . (2.10)

Now perform an infinite reparameterization of the form discussed in refs. [12, 21],

Ψ → Ψα = exp

[

1

2
ln α(L0 − L∗

0)

]

Ψ (2.11)

with α → 0. To leading order, the solution becomes

Ψα = −
1

α
c + . . .O(α0) (2.12)

and the corresponding kinetic operator is,

dΨ → dΨα = −
1

πα
(c(1) − c(−1)) + . . .O(α0) (2.13)

This is just the kinetic operator for (a form of5) vacuum string field theory. If the solution

had some expectation value for the tachyon γ(0), this would have appeared as a subleading

3Eq. (2.7) can also be derived from the marginal solution [14, 15] by setting λJ = λcKBc − λ

1+λ
Bγ2

and taking λ → ∞, as suggested in ref. [16]. Actually this J is not “marginal” in the sense that it is not

BRST invariant, but it does satisfy d(λJ) + (λJ)2 = 0. Remarkably, this is sufficient for the full marginal

solution to satisfy the equations of motion, as observed in ref. [17].
4For recent high-level studies of the spectrum around the tachyon vacuum, see ref. [19].
5This reparameterization squeezes towards the endpoints rather than the midpoint, which is why we

obtain c(1) rather than c(i). The author thanks E. Fuchs for a useful discussion on this limit.
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divergence α−1/2 in the vacuum kinetic operator. Such terms can be accommodated into

the vacuum string field theory framework [22], but really it is the leading divergence from

the c ghost which is responsible for the absence of cohomology. Note that these comments

naively apply to the Berkovits theory as well,6 since there the role of Ψ is played by e−ΦdeΦ.

Thus we have the puzzling result that for superstrings, the tachyon is not necessary for

describing physics around the tachyon vacuum.

2.1 ψN piece

To prove Sen’s conjectures for the bosonic string it is necessary to regulate the solution

and subtract a mysterious term — the “ψN piece” — which vanishes in the Fock space [1].

As we will see, a similar procedure is necessary for the superstring, but the story needs

some refinement.

The necessity of the ψN piece can be understood from the requirement that the equa-

tions of motion hold in a sufficiently strong sense [11, 24]. It is straightforward to prove

the equations of motion for eq. (2.7) using the identities eqs. (2.3), (2.4), but in the process

we need to make the following assumption about the field K
1−F 2 :

KF 2

1 − F 2
=

K

1 − F 2
− K (2.14)

This apparently innocuous equation is where the subtleties with the ψN piece come in.

The “obvious” solution to eq. (2.14) is to define K
1−F 2 as a geometric series expansion,

K

1 − F 2
= lim

N→∞

N
∑

n=0

KΩn (2.15)

Plugging in, one finds that eq. (2.14) is satisfied up to a term,

lim
N→∞

KΩN (2.16)

This actually vanishes in the Fock space as a power,

1

N3
(2.17)

but for the bosonic string this is not rapid enough to ensure the equations of motion hold

when contracted with the solution [11, 24]. For this purpose one needs eq. (2.14) to hold

up to 1/N4 ∼ K2ΩN , which requires the sliver state to be subtracted from the geometric

sum. This is the origin of the ψN piece.

For more general purposes it may be useful to have a definition where eq. (2.14) is

satisfied up to an arbitrary inverse power of N in the Fock space. To see what the required

corrections are, it is helpful to be more systematic. If we take eq. (2.14) as given, one finds

upon recursive substitution the identity:

K

1 − F 2
=

N
∑

n=0

KΩn +

(

K

1 − F 2
− K

)

ΩN (2.18)

6In fact, a GSO(+) vacuum solution to the Berkovits theory has already been conjectured in ref. [23].

The relation to our cubic solution is e−ΦdeΦ = Ψ.
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Now take the limit N → ∞, and on the right hand side substitute the formal power series

expansion,

K

1 − F 2
= −

∞
∑

n=0

Bn

n!
Kn (2.19)

in terms of Bernoulli numbers Bn. The result is the geometric expansion eq. (2.15) plus an

infinite sequence of corrections involving powers of K acting on ΩN . With a little Bernoulli

arithmetic we can establish the following claim:

Claim: the expression,

K

1 − F 2
= lim

N→∞

[

N
∑

n=0

KΩn −

(

A−2
∑

k=0

Bk

k!
Kk + K

)

ΩN

]

(2.20)

is a solution to eq. (2.14) up to terms of order,

lim
N→∞

KAΩN ∼
1

N2+A

with A ≥ 1.

Though at the moment it is not obvious, as it happens we will need A = 3 for the

superstring. Therefore we will take (B1 = −1
2),

K

1 − F 2
= lim

N→∞

[

N
∑

n=0

KΩn −

(

1 +
1

2
K

)

ΩN

]

(2.21)

Plugging in to eq. (2.7) gives a regulated expression of the superstring solution,

Ψ = lim
N→∞

[

N
∑

n=0

ψ′
n − ψN −

1

2
ψ′

N

]

− Γ (2.22)

where,

ψn = FcΩnBcF

ψ′
n =

d

dn
ψn = FcΩnKBcF

Γ = FBγ2F (2.23)

The correction −1
2ψ′

N is new and was not necessary for the bosonic string.

3. Energy

Let us now calculate the energy. To prove Sen’s conjecture we must demonstrate,

E = −S(Ψ) = −
1

2π2
(3.1)

– 6 –
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in the appropriate units.7 Assuming the equations of motion and the regulated solution

eq. (2.22), the energy breaks up into three terms:

E = −
1

6
〈〈Ψ, QBΨ〉〉 = EB + EΓ + Eψ′ (3.2)

where EB is the contribution from the “bosonic” part of the solution, EΓ is the contribution

from the superstring correction term, and Eψ′ is the contribution from the additional

“vanishing piece” −1
2ψ′

N . Explicitly,

EB = −
1

6
lim

N→∞





N
∑

m,n=0

〈〈ψ′
m, QBψ′

n〉〉 − 2
N

∑

m=0

〈〈ψ′
m, QBψN 〉〉 + 〈〈ψN , QBψN 〉〉





EΓ = −
1

6
lim

N→∞

[

〈〈Γ, QBΓ〉〉 − 2

N
∑

m=0

〈〈ψ′
m, QBΓ〉〉 + 2〈〈ψN , QBΓ〉〉

]

(3.3)

Eψ′ = −
1

6
lim

N→∞

[

1

4
〈〈ψ′

N , QBψ′
N 〉〉 −

N
∑

m=0

〈〈ψ′
m, QBψ′

N 〉〉 + 〈〈ψN , QBψ′
N 〉〉 + 〈〈ψ′

N , QBΓ〉〉

]

These expressions can be evaluated with knowledge of the inner products,

〈〈ψm, QBψn〉〉 〈〈ψn, QBΓ〉〉 〈〈Γ, QBΓ〉〉 (3.4)

An elementary computation with eqs. (2.3), (2.4) reduces these to a correlator on the

cylinder (see figure 1):

〈〈ΩxBcΩycΩzγ2〉〉 =

〈

Y−2

∫ −i∞

i∞

dw

2πi
b(w)c(y + z)c(z)γ2(0)

〉

Cx+y+z

(3.5)

We evaluate this in appendix A, finding:

〈〈ΩxBcΩycΩzγ2〉〉 =
x + y + z

2π2
y (3.6)

The inner products become,

〈〈ψm, QBψn〉〉 =
m + n + 2

π2

〈〈ψm, QBΓ〉〉 =
1

π2

〈〈Γ, QBΓ〉〉 = 0 (3.7)

This result is vastly simpler than for the bosonic string, where 〈ψm, QBψn〉 is a rather

unwieldy expression involving trigonometric functions [1].

7We normalize the basic correlator in the upper half plane,

〈c∂c∂
2
c(z1)e

−2φ(z2)〉UHP = −2

and set α′, the open string coupling, and the spacetime volume factor to unity. Our normalization of the

action agrees with Ohmori [9].
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Figure 1: Correlator eq. (3.5) on the cylinder. The dashed vertical lines are identified, and the

picture changing operator Y
−2 is inserted at the midpoint, ±i∞ in this coordinate system.

It is now extremely straightforward to evaluate the energy. Calculating the “bosonic”

contribution first,

EB = −
1

6
lim

N→∞

[

0 − 2
N

∑

n=0

1

π2
+

2N + 2

π2

]

= −
1

6
lim

N→∞

[

−
2(N + 1)

π2
+

2(N + 1)

π2

]

= 0 (3.8)

We make a few comments. First, note that the “Fock space” contribution to the energy,

from the double sum, vanishes identically because 〈〈ψ′
m, QBψ′

n〉〉 = 0. This is consistent

with the expectation that the pure gauge solutions of Schnabl [1] have vanishing energy.

Second, note that,

〈〈ψN , QBψN 〉〉

diverges linearly for large N , though fortunately this divergence cancels out of EB. Thus,

the inner product 〈〈ψ′
N , QBψN 〉〉 will a priori make a finite contribution to the energy,

which is why the subleading correction −1
2ψ′

N to the ψN piece is important.

The contributions from EΓ and E′
ψ are easily seen to be,

EΓ = −
1

6
lim

N→∞

[

0 − 0 + 2 ·
1

π2

]

= −
1

3π2

Eψ′ = −
1

6
lim

N→∞

[

0 − 0 +
1

π2
+ 0

]

= −
1

6π2
(3.9)
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Adding everything up,

E = 0 −
1

3π2
−

1

6π2
= −

1

2π2
(3.10)

recovering the expected vacuum energy.

We can also prove that the equations of motion are satisfied when contracted with the

solution. Though this essentially follows from our previous discussion in section 2.1, it is

worthwhile to check. We need to evaluate the cubic term,

〈〈Ψ,Ψ ∗ Ψ〉〉 (3.11)

Since the picture changing insertion Y−2 has φ-momentum −4 and we need φ-momentum

−2 to get a nonvanishing correlator, the only nonvanishing contributions to the cubic term

involve two ψms and one Γ. Furthermore, because the correlator eq. (3.6) is linear in

x, z, the contributions have at most one ψ′
m. Multiplying everything out, one finds the

nonvanishing terms are,

〈〈Ψ3〉〉 = 3 lim
N→∞

[ N
∑

m=0

〈〈Γψ′
mψN 〉〉 +

N
∑

m=0

〈〈ΓψNψ′
m〉〉

−〈〈Γψ2
N 〉〉 −

1

2
〈〈Γψ′

NψN 〉〉 −
1

2
〈〈ΓψNψ′

N 〉〉

]

(3.12)

Calculating the inner product,

〈〈Γψmψn〉〉 = 〈〈Ωm+1BcΩcΩn+1γ2〉〉

=
m + n + 3

2π2
(3.13)

we find,

〈〈Ψ3〉〉 = 3 lim
N→∞

[

2
N

∑

n=0

1

2π2
−

2N + 3

2π2
−

1

2π2

]

= 3 lim
N→∞

[

2N + 2

2π2
−

2N + 3

2π2
−

1

2π2

]

= −
3

π2
(3.14)

and we have already calculated,

〈〈Ψ, QBΨ〉〉 = 6 ·
1

2π2
=

3

π2
(3.15)

proving the equations of motion are satisfied.

One interesting feature of these proofs is that they work even at finite N , that is, the

limit N → ∞ was not necessary. Of course, at finite N we do not really have a solution,

but this can be fixed up by replacing our regulated expression eq. (2.21) with,

K

1 − F 2
=

N
∑

n=0

KΩn −

(

∞
∑

k=0

Bk

k!
Kk + K

)

ΩN (3.16)
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For finite N substituting the Bernoulli power series is somewhat formal, but interestingly

for N = 0 we recover the solution written in the L0 level expansion:8

Ψ = −

∞
∑

n=0

Bn

n!
FcKnBcF − FBγ2F

= −
∞
∑

n=0

Bn

n!

dn

dαn

∣

∣

∣

∣

0

ψα − Γ (3.17)

Therefore, the fact that our calculation works independent of N implies that we have

indirectly proven the energy in the L0 level expansion as well. If we like, we can repeat the

proof in the new notation:

E = −
1

6
〈〈Ψ, QBΨ〉〉

= −
1

6

∞
∑

m,n=0

BmBn

m!n!

∂m

∂αm

∣

∣

∣

∣

0

∂n

∂βn

∣

∣

∣

∣

0

〈〈ψα, QBψβ〉〉 −
1

3

∞
∑

m=0

Bm

m!

∂m

∂αm

∣

∣

∣

∣

0

〈〈ψα, QBΓ〉〉

= −
1

6

[

(

B0

0!

)2

〈〈ψ0, QBψ0〉〉 + 2
B0B1

0!1!
〈〈ψ′

0, QBψ0〉〉

]

−
1

3

B0

0!
〈〈ψ0,Γ〉〉 (3.18)

where in the last step we used the fact that second and higher derivatives of the inner

products vanish. Plugging in eq. (3.7) and B1 = −1
2 ,

E = −
1

6

(

2

π2
−

1

π2

)

−
1

3π2
= −

1

2π2
(3.19)

For the bosonic string, evaluating the energy in the L0 level expansion gives a very com-

plicated asymptotic series, though the series can be resumed numerically to give a good

approximation to the brane tension [1]. One advantage of this derivation is that we do

not need to regulate the solution or worry about subtracting the correct ψN piece; these

subtleties are implicitly taken care of in the L0 level expansion.

4. Conclusion

In this paper we have given a remarkably simple proof of Sen’s conjectures in cubic super-

string field theory. From an analytic perspective the solution appears to be as regular as

Schnabl’s solution for the bosonic string. From the perspective of the level expansion the

situation is unclear. Given the Siegel gauge results (see table 1) we expect convergence to

be irregular,9 but perhaps the situation will improve at sufficiently high level.

8In the current notation, a state FφF has L0 eigenvalue h if the operator insertion corresponding to the

field φ has scaling dimension h in the cylinder coordinate system. K, B, c, γ2 have dimension 1, 1,−1,−1

respectively. Hence, for example, FcKnBcF has L0 eigenvalues n − 1 and FBγ2F has L0 eigenvalue 0.
9In fact, Ohmori [9] searched for, but failed to find a GSO(+) vacuum out to level (2,6). We find this

worrisome, but it may be hard to identify a vacuum in level truncation because the cubic coupling 〈〈c, c, c〉〉

vanishes by φ-momentum conservation. Therefore the auxiliary tachyon must depend on interactions with

higher level fields to generate a minimum.
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Figure 2: Conjectured form of the tachyon potential in Schnabl gauge for the cubic superstring.

The minimum on the lower branch represents our analytic solution eq. (2.7). The dots at the edge

of the curves represent points on the tachyon potential where Schnabl gauge breaks down.

Given the intrinsic uncertainties of the cubic theory, it is highly desirable to construct

an analytic vacuum solution to Berkovits’s WZW-type superstring field theory. Following

the philosophy of refs. [22, 16], it is not difficult to construct formal solutions once an

appropriate solution for the cubic equations of motion is known — in fact, one such vacuum

solution has already been proposed in ref. [23]. However, the GSO(+) Berkovits solutions

we have found seem to be singular in the L0 level expansion. We suspect that an analytic

vacuum solution in the Berkovits theory will have to involve the GSO(−) sector in some

nontrivial way. This may be expected from level truncation analysis, which shows a smooth

double-well potential with minima for the tachyon at finite expectation value.

The biggest puzzle presented by our solution is the absence of any component in the

GSO(−) sector. This brings up three apparent paradoxes:

1. There is an expectation, which so far has been unchallenged, that open string field

theory on a particular brane system only describes classical solutions which are acces-

sible via tachyon condensation. A BPS brane carries a conserved topological charge,

so there is no means for it to decay to the vacuum, by tachyon condensation or

otherwise. Thus it appears that the cubic superstring has “too many” solutions.

2. The intuitive picture of tachyon condensation suggests that the tachyon should roll off

the top of the potential and come to rest at the vacuum with finite expectation value.

However, the story here must be different. It seems possible that the tachyon potential

in Schnabl gauge hits a singularity before a stable minimum is reached, and the

GSO(+) solution lies on a disconnected branch directly below the unstable maximum

(see figure 2). This scenario is made a more plausible from the level 5
2 results of

Raeymaekers [6]. It is also circumstantially supported by the (somewhat mysterious)

late time rolling tachyon limit of Ellwood [25]. For the bosonic string, there seems
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to be a sense in which the late time behavior of the rolling tachyon solution [14, 15]

approaches Schnabl’s solution. However, a similar limit for the superstring [16, 26]

fails to yield a well-defined expression, suggesting a vacuum solution in Schnabl gauge

with nonvanishing GSO(−) sector may not exist.10

3. The third paradox comes from supersymmetry. Since the perturbative vacuum on

the BPS brane has unbroken supersymmetry, one would not expect to find a state in

the theory with lower energy.

It would be very interesting to gain concrete insight into these puzzles.

The author would like to thank I.Ellwood, E.Fuchs, J. Raeymaekers, M. Schnabl and

A. Sen for useful conversations. The author also thanks D.Gross and the KITP in Santa

Barbara for hospitality while some of this work was in progress. This work is supported by

the National Science Foundation under Grant No.NSF PHY05-51164 and by the Depart-

ment of Atomic Energy, Government of India.

A. Correlator

In this appendix we derive the correlator eq. (3.6) used to derive the inner products and

energy in section 3. We start with:

〈〈ΩxBcΩycΩzγ2〉〉 =

〈

Y−2

∫ −i∞

i∞

dw

2πi
b(w)c(z1)c(z2)γ

2(0)

〉

CL

L = x + y + z z1 = y + z z2 = z (A.1)

as shown in figure 1. To simplify the b ghost insertion, we use the trick of Okawa [11]. We

introduce a linear function on the cylinder (z)δ with a branch cut at Re(z) = δ, and write

the b insertion as a contour integral around this branch cut:

∫ −i∞

i∞

dw

2πi
b(z) =

1

L

∮

Re(z)=δ

dw

2πi
(w)δb(w) (A.2)

The factor of 1/L is necessary because the discontinuity has height L for a cylinder of

circumference L. We then deform the contour away from the branch cut to encircle the c

insertions inside the correlator:

〈〈ΩxBcΩycΩzγ2〉〉 = −
1

L

〈

Y−2

(
∮

cs

dw

2πi
wb(w)c(z1)c(z2)

)

γ2(0)

〉

CL

= −
z1

L
〈Y−2c(z2)γ

2(0)〉CL
+

z2

L
〈Y−2c(z1)γ

2(0)〉CL
(A.3)

The remaining correlator can be evaluated by mapping back to the upper half plane and

performing the necessary contractions. The answer is,

〈Y−2c(z)γ2(0)〉CL
= −

L2

2π2
(A.4)

10For an interesting and different approach to marginal deformations, see refs. [27, 28]
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The simplicity of this result is responsible for all of the drastic simplifications of the energy

calculation. We can see that the basic structure is correct by inspection: The factor of L2

is necessary because the insertions have total conformal dimension −2. Furthermore, the

result must be independent of z because c(z) and γ2(0) only have contractions with the

picture changing operators at ±i∞, and by cylindrical symmetry these contractions are

independent of the absolute or relative positions of these operators. Thus,

〈〈ΩxBcΩycΩzγ2〉〉 =
L

2π2
(z1 − z2)

=
x + y + z

2π2
y (A.5)

reproducing eq. (3.6).
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